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ABST RACT

The number of zeros contained in a given interval (a,b) for a

solution to a Sturm-Liouville differential equation is of importance in

many problems of mathematical physics. This number maybe deter-

mined through Sturm's Comparison Theorem. Given one zero of the

solution to a Sturm-Liouville differential equation, a technique, based

upon Sturm's Theorem, of computing the next consecutive zero of the

solution is proposed. The existence of a function which satisfies the

desired end results of the proposed technique is shown. The technique

is then applied to Bessel's differential equation and the results tabula-

ted for the first 20 roots of J (x) and J,(x). Unfortunately this

technique did not achieve the desired result of convergence to succes-

sive zeros of the given Bessel Function.

The writer wishes to express his appreciation for the assistance

and encouragement given him by Professor E. J. Stewart of the U. S.

Naval Postgraduate School in this investigation.
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1. Introduction.

Consider a differential equation system.

[r(x) y' (x)]' + P(x) y(x) = (1.1)

y(a) = y(b) =

where r(x) and p(x) are positive, continuous, real valued functions

on [a,b]. The system (1. 1) is known as a Sturm- Liouvilfe System.

A frequent problem encountered in mathematical physics requires

the determination of consecutive characteristic roots of a system (1.1).

The solutions to (1. 1) usually do not possess the nice regular charac-

teristics of the trigonometric functions; consequently the former are

in general more difficult to manipulate.

When the value of one characteristic root a of (1. 1) is known,

Sturm's Comparison Theorem suggests a possible means of computing

the next consecutive root b in the following sense:

A sequence of functions is generated from (1. 1). Each element of

the sequence is obtained by selecting a particular value of the indepen-

dent variable x = x. and substituting this value into the coefficient P(x)

and r(x) of (1.1) giving

[r(x.)y'(x)]' + P(x.) y (x) = (1.2).

The solution of (1. 2) is forced to vanish at y = a, and the next consec-

utive zero of this solution is chosen as x. ,^ the next element of the

sequence. It is desired that the sequence so generated result in an

equation of the form (1.2) such that its solution vanishes at x = a

and x = b, the zeros of the solution of (1. 1).

The theory is developed for a general Sturm- Liouvile System but

specific applications are limited to Bessel's Equation of order n .

(n a positive integer).
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We shall define an indexing of the roots of a solution to a differen-

tial equation as follows:

Let r. be the first root > 0, and Xj the next root greater than

r,. Furthermore, if r. is the i th root > 0, then r. . is the

(i+l)st root > 0.

If r, is the given root of a solution to a differential equation, we

shall define r, . , as the next consecutive root of the solution.
k+1



2. Mathematical Background.

This section contains theorems and mathematical developments

which will be called upon in later sections.

2, 1. Sturm's Comparison Theorem.

Given two equations of a Sturm- Liouville type:

y" + Ay=0 (2.1.1)

y(a) =

u" + Bu = (2. 1.2)

u(a) =

where A and B are positive, real constants and B is greater than A.

Let us determine a solution y(x) to (2. 1. 1) such that y(a) = 0.

The elementary theory of differential equations tells us that the general

solution is of the form

y(x) = C, sin ^Ax + C^ cos "^A x .

When x a a

y(a) = C. sin-y'A'a + C
£
cos-y^a =

C , s iny^L a
C
2

= r~ *

cos ~yA a

Since C, is an arbitrary constant, choose C, =k cos y A a.

y(x) = k [sin yA x cos yA a - cos yA x sin yA a
]

y(x) = k sin y A (x - a).

Similarly, (2. 1. 2) will have a solution u(x) = k, sin yBfx - a) .

The assumption A < B tells us u(x) will "oscillate" more rapidly than

y(x) or that u(x) will have at least as many zeros as y(x) on a given

interval (a, b).

When the coefficients of (2. 1. 1) are positive, real valued functions

of the independent variable x, the solutions obtained must be defined

in terms of so-called "special" functions such as Bessel functions.



Charles Sturm (1803-1855) made a study of the rates of "oscilla-

tion" of solutions to equationdfof the form

[ r (x) y'(x) ]' +P (x) y(x) =

[ r (x) w'(x) ]• + Q(x) w(x) =

y(a) = w(a) = y(b) =

where r(x) > 0; P(x) and Q(x) are continuous on [a,b]. He proved

that, in general, the larger P(x) the faster y(x) will oscillate. More

concisely, Sturms Comparison Theorem is stated as follows:

Theorem 2. 1 Sturm's Comparison Theorem.

Given two equations;

[r(x) y']' +p(x) y= (2. 1.3)

and [r(x) v']' +q(x) v = (2.1.4)

where r(x) is positive in the closed interval [a,b];

r(x), p(x) and q(x) are continuous in [a,b] and

q(x) > p(x) with strict inequality for at least one point in

[a,b]. If a solution y(x) of (2. 1. 3) has consecutive

zeros at x = x and x = x, , with x, > x , and x, , x
o 1 1 ' o 1 o

are in the interval [a,b], then a solution v(x) of (2. 1.4),

which vanishes at x = x , will vanish again in the open

interval (x , x,) .

Proof:

Suppose y(x) > in (x , x,) and y'(x )>0, y'fxj) < and

v'(x )>0. Then if y(x) and v(x) are solutions to (2. 1.3) and

(2. 1.4) respectively, we have the identities

[r(x) y'(x)]' +p(x) y(x) = (2.1.5)

and [r(x) v^x)] 1 + q(x) v(x) = (2.1.6)



If we multiply equation (2.1.5) by -v(x) and equation (2.1.6) by

y(x) we have

-,[r(x) y'(x) ]' v (x) - p(x) y(x) v(x) = (2. 1. 7)

[r(x) v'(x)]' y(x) + q(x) v(x) y(x) = (2. 1.8)

Adding (2. 1. 7) and (2. 1. 8) then integrating from x to x. we

have

r
|

x
l

x
l

(xKyjxlv'lxl-y'fxMx)] | +/ [q(x)-p(x)]y(x)v(x)dx =
x
o Jx

(XjJy'CxjMxj) = / [q(x)-p(x)] y(x) v(x) dx (2. 1.9)

X

X

since y(x ) = if x is a solution to (2. 1.3).
* o o

Suppose now that v( x ) > everywhere in (x , x.), (i.e. if

v(x ) = and v 1 (x ) >0 then v(x) has not vanished anywhere in

(x , X.) ), then this implies that r(x,) v(x,) y'(x,) is negative while

r
x

/ (q(x) - p(x) ) y(x) v(x) dx is positive. This contradiction implies

x*o
that v(x) cannot be positive everywhere in (x , x, ). Similarly, the

assumption v'(x ) < and v(x) negative everywhere on (a,b) again

leads to a contradiction and the theorem is established.

2.2 The Normal Form.

Consider a differential equation

y» + P(x) y' +Q(x) y* (2.2.1).

Let y u v, then y 1 a uv* +u'v

and

y'fcuv" + 2u'v' + uMv.

Substituting for y in (2.2.1) we have

uv" + [ 2u' + P(x)u] v' + [uM + P(x) u' + Q(x)u] v s (2. 2. 2).



2

v" + [Q(x) - ?£L- - \ ^) ] v = (2. 2. 3)

Suppose we choose u such that the coefficient of v 1 vanishes. Set

2u' + P(x) u =

du/u + 5J2l dx =

~ r 1 P(x) . tu = C exp 1-7 —j— dxj

Let C = 1 and we have

u' = j P(x) u

u" = ^P(x) u ' - T"
dP/

dx

x (P(x))
2

1 dP/ ,

+ ' U - y I dx U .

Substituting u' and u" in (2. 2. 2) we get
2

uv" + [-P(x) u + P(x) u] v' + [Q(x)u +
(P^- u - i dP

/dx u

P(x)
2

t n2—- u
J
v = .

We see that we have a factor of u in every term,therefore it may be

divided out leaving

I

4 ' 1 dx

We say that (2. 2. 3) is equation (2. 2. 1) transformed into normal

form. We will see that the normal form plays an important role in our

later development.

2. 3. Existence Theorem.

Consider a differential equation reduced to normal form

y" + R(t) y = 0. (2.3.1)

y(a) = y(b) = 0.

We desire to know if there exists a t in the interval (a,b) such

that the equation

u" + R(F) y = (2. 3.2)

R(F) is R(t) evaluated at t = F such that a solution u(t) to (2. 3.2)

can be forced to have zeros at both t = a and t = b. The answer to

this question may be stated in the form of a theorem as follows:
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Theorem 2. 2.

Given a differential equation of the form:

y" + R(t) y = (2.3.3)

where R(t) is positive, real valued, continuous and monotone in (a,c),

where b < c, and whose solution y(t) has consecutive zeros at t = a

and t = b, a < b < c. Then there exists a F in the interval (a,b) such

that the equation

u" + R(F) u = (2.3.4)

has a solution u(t) with a zero at t = a and moreover, u(t) has its

next consecutive zero at t = b.

Proof:

First assume R(t) is monotone decreasing, then

R(a) > R(t) > R(b) for all t in (a, b). Choose that solution u,(t) of

u" + R(b) u = such that u, (t) vanishes at t = a. A solution that

satisfies this requirement is u, (t) = k, sin y R(b) (t-a). Clearly

u, (a) = and moreover, u, (t) will have its next consecutive zero,

for t greater than a, when the argument of the sine function is equal ir,

that is, when VR(b) (t-a) = it . Since R is assumed decreasing,

R(b) < R(t) for all t in (a.b^ therefore, Sturm's Comparison Theorem

tells us that u, (x) will vanish again at t = t, where b < t,. Similarly,

let u" + R(a) u = have a solution u (x) which vanishes for t = a.
cL

Then with R(t) < R(a) for all t in the interval (a,b), w^ have that

u (t) will vanish again at some point t = t^ such that a < t, < b.

Case II.

Now suppose R(t) is increasing. Choose u, (t) a solution of

v" + R(b) v =

such that a root at t = a„ R(t) < R(b) for all t in (a,b), hence v,(t)



will vanish again when t = t,, t, < b„ Similarly, v" + R(a) v = has a

solution v (t) which vanishes at t = a and will have its next consecutive
3.

zero at some t = t,, b < t..
4 4

In either case, R(t) increasing or R(t) decreasing, the root b of

equation (2. 3. 3) is between two roots of (2. 3.4) determined by evalua-

ting R(t) at t = a and at t = b. This and the continuity of R(t) assures

us that there exists a t in (a,b) such that ut- (t), a solution to (2. 3.4)

which vanishes at t = a, will vanish again when t = b, and the theorem

is established.

An interesting conclusion from Theorem 2. 2 is the following:

Theorem 2. 2. 1.

Given a system of the type (2. 3. 1) where R(t) is monotone, then

the next consecutive root of a solution u(t) to (2. 3.4) such that

u(a) = must lie in the interval (a + , a =
) .

yaw vru)

The proof follows directly from the proof of Theorem 2.2. The end

points of the interval (a + ' yR(b), a + / yR(a) ) are precisely the

t. found in Theorem 2. 2.
l

Note that the arbitrary constants occuring in the solutions to equations

(2.3.1) and (2.3.4) have no effect upon the zeros and, therefore, will

be ignored in all further considerations.

We should also note that in a general Sturm- Liouvilfe System (2. 3. 1),

the function R(t) is not always monotone.



3. Bessel's Equation.

Let us now consider a typical Sturm -Laouville System:

x
2
y"+xy' + (x

2
- n

2
) y = (3. 1)

y(a) -y(b) = (3. la)

Equation (3. 1) is the general form of Bessel's Differential Equation of

order n. A solution of (3. 1) is

y(x) = J
n
(x) (3. 2)

where J (x) is known as the Bessel function of the first kind.
n

We see that before we can derive any benefit from the theorems of

section 2, we must reduce (3. 1) to its normal form. Write (3. 1) in

the form
. 2

y» + iy' + (1 - ^ ) y = 0. (3.3)
x

Section 2. 2 tells us that (3. 3) may be reduced to normal form by

the transformation

y = v exp [ " 2 J
~ dx ]

= v exp [ - ^ log
e
x ]

Then

= v x
" 1/2

(3.4)

y « = _ ^v(x)
3/2

+ v' x"
1/2

(3.5)

„ 3 -5/2 1 , -3/2 1 , -3/2, „ -1/2 ,

y" = j v x - j v'x - y v x + v x w« °)

Substituting (3.4), (3.5), and (3. 6) into (3.3) and simplifying we

have the desired normal form of Bessel's Equation

V " + (i + \l±£-
) v = 0. (3.7)

4x

The transformation (3.4) implies that (3.7) has a solution

v(x) = x
1/2

J
n
(x). C

Trivially any zero of (3.2) is also a zero of (3.8).



Consider the differential equation

w" + w = (3. 9)

w(a) =

We know that a solution to (3. 9)

w(x) = k sin(x-a)

vanishes at x = a and again at x = a + ir .

Suppose we examine (3.7) and (3.9) with respect to Theorem 2. 1

(Sturm 1

s Comparison Theorem). Let us denote the coefficient of v in

(3. 7) as

P(x) = 1 +
1-^n- (3. 10)
4x^

We see from (3. 10) that we must consider two cases, 1) when n =

and 2) when n £, 1 .

Case I.

n = 0. We see that P(x) ^> 1 and continuous, therefore, theorem

2. 1 applies. We conclude that if the solution (3. 8) to (3. 7) vanishes

when x = a, it will vanish again on the interval (a, a + ir). This implies

that the difference between consecutive roots of J (x) is less than ir .o

Moreover, we see that

lim P(x) = 1 .

X -£> o«

This tells us that with respect to the index i of roots r. ;

lim | r.
+ 1

- r. | = ir. (3. 11)

Case II.

n > 1. In this case < P(x) < 1 when x l4n -1 <x< && .

Then x must be in the interval ( y 7 4n -1 , oo> ) in order that (3. 7)

have an oscillating solution. Theorem 2„ 1 tells us that a solution to

(3. 7) which vanishes at x = a will not vanish again in (a, a + ir ).

10



Therefore, the difference between the consecutive roots of J (x) is

greater than it . Similarly,

lim P(x) - 1, when n £ 1 ,

tells us that the limiting difference is the same as in Case I, namely the

difference given in (3. 11)„

The treatment of the differences between consecutive roots of the

Bessel functions in the above two cases, suggests that further treatment

of the problem also be made in two parts, i.e. 1) n = and 2) n Jl ,

11



4. Application to Bessel's Equation of Order Zero.

When n = 0, the normal form of Bessel's differential equation

reduces to

v" + (1 + —L- ) v = 0. (4. 1)

4x

Suppose the conditions

v(a) - v(b) = (4. 2)

are imposed. Let the coefficient of v in (4„ 1) be denoted by P(x)„ i.e.

P(X ) = 1 + J_
( 4 . 3)

4x^

Clearly P(x) y 1 for all x, P(x) is continuous and decreasing. Then,

from theorem 2. 2, there exists an x in the interval (a,b) such that

the equation

u" + (1 + —L^ ) u =

4x

has a solution

(x-a)

with a root at x - a and, moreover, will have the next consecutive

root at x = b.

Let us now attempt to construct a sequence lx.\ which will converge

to x . There are two immediate choices for the first element of the

sequence, a or a + it . We will generate the sequence [x.V by means

of the following recursion formulae:

P(x.) - 1 + -J_ (4.4)
4x.

l

u'.« f P(x.) u. = (4. 5)

u.(x) = k 8 inVP(xT)(x-a) (4.6)

x.
+ 1

= a +ir/Vp(xT[ (4.7)

12



Wherein (4. 6) is a solution to (4. 5) which is forced to have a root at

x = a; and x.., is the next consecutive root of (4.6). We see from

(4.4) that P(x.) > 1 for all x. . This implies that x. . < a + ir for

all x. .

Case I.

Choose x = a, giving

p <xo» = x +7T " l * T2 <4 -
8 >

4x 4a
o

u» + P(x
q

) u
q

= (4.9)

u
Q
(x) = k

Q
3infP(x

o
)(x-a) (4. 10)

x
x
= a + tt /YpJxT (4.11)

Since P(a) > P(x) for all x in the interval (a,b), theorem (2.1)

(Sturm's Comparison Theorem) tells us that x. lies in the interval

a < x. < b ,

Then x, is substituted in the recursion equations giving

P(xj) = 1 + -Lj (4.12)
4xj

U« + P(x
}

) Uj = (4. 13)

Uj(x) » k
x
sin yP( Xl ) (x-a) (4. 14)

x-, = a + it / VP(xj) (4. 15)

We cannot npply theorem 2. 1 with respect to (4 U 13) and (4 U 3)

since we cannot guarantee the necessary inequality between P(x.) and

P(x). However, we may apply theorem 2„ 1 with respect to (4. 13)

and (4.9) since P(x,) < P(x ). This tells us that x-, y x, .

13



If we expand (4« 15)

IT

x-, = a + r~

1 + 4x,

= a+
/l +

4/a +/
1 +

4a

we see the sequence is generating a rather strange appearing continued

fraction; strange in the sens*1 that the more common continued fractions

do not contain radical expressions. Moreover, note that the fractional

form becomes exceedingly more complicated as each new term is added.

Let us now assume that for some m > 0, we have

m- l ^ m- £

The inequality (4. 16) implies that the following inequality also holds

1 . ~. v , 1
P(x ,) = 1 +m- 1

4x
< P{x ) 1 +m- £

m- 1

7~T
4 x -,m- &

(4.17)

Theorem 2. 1 immediately tells us that x is greater than x ,' m ° m-

1

Inductively we have shown that the sequence fx.l is increasing.

Moreover, we have shown that the sequence is bounded above by a + tr,

consequently, the sequence converges to some :x such that

Tf

x = a +

1 +
1

4x
* 2

x-a) = 4x it

4x + i

(4x
?
+ l)(x - a)

2
- 4x

2
it
2

= (4. 23)

4x
4

- 8a x
3
+ (4a

2
+ 1 - 4ir

2
) x

2
-2a x + a.

2
= . (4. 24)

Then x is the root of (4. 24) that is nearest a + ir . We see from

^ 2
(4. 23) that for large roots, 4 x >;,-.! and the large roots of (4„ 24) may

be approximated by?

14



A ** 2 . ** v 2 - 2 2 _
4 x (x - a) - 4 x ir =0

(x-a) - it =0

x = a + ir

A simple calculation will show for any given root 'a' of J (x) that

(4. 24) has a root near a + tt .

Case II.

Let us choose x = a + ir .
o

P(x ) = 1 + -1—
4(a+irr (4.25)

u« + P(x
o
)u

Q
= (4.26)

u
Q
(x) = k

Q
sin yP(x

Q) (x-a) (4. 2 7)

x
x
= a + tt / YP(x

o ) (4.2 8)

We have P(a + tt) < P(x) for all x in (a,b), therefore, we know x

cannot be in (a,b), therefore, we see

b < Xj < a + ir (4. 29) .

Substituting x. in the recursion formulate we have

P(x ) = 1 + —j- (4. 30)

4x,
1

u
x
" + P(x

x
) Uj. m (4. 31)

u
x
(x) = k

x
sin yp(Xl ) (x-a) (4. 32)

x
2
= a + ir / V^pT^T (4. 33) .

The inequality (4, 29) tells us that P(x,) y P(x ) s and we get x
?

< x.

from Theorem 2. i. Moreover, (4. 29) also tells us that P(x.) < P(x)

for all x in (a,b) and x
? y> b .

If we reverse the assumed inequality in (4 G 16) we can show indue-

tively that this sequence £x. , generated by starting at x - a + tt ,

is a monotone decreasing sequence. Moreover, we see that fx.| > b

15



for all i, hence is bounded beiow u Then the sequence converges to an

x, where

Xj = a + tt / f^Xj )

TT

~ a +

-^-T
4x,

(4 x. + l)(x,-a) - 4 x, tt =0

4 x
x

4
- 8axj 3

+ (4a
2
+ 1 - 4rr

2
) Xj

2
- 2a x. + a

2
~ (4 34) .

The quartic (4 34) has coefficients which are identical to the coef-

ficients of like powers of x in (4„ 24) , therefore we conclude that

x, = x , This shows that there is no difference in the Jimit between

the sequence generated in Case I and that generated in Case IX Un«

fortunately, we have ilso shown that x > b , bur, we have no indi< •

of the difference between x and b

The quartic (4 g 24) has been solved with the axd of the CDC 1604

Digital Computer for the first 20 roots of J (x)„ The computed values

of xr are compared with the tabulated values of the roots of J (x) , The
o

difference between x and the tabulated value of b is shown in the error

column. The difference has its maximum at the first root and decreases

quite rapidly as x grows larger.

Simple calculations show that x is almost midway between b and

a + it for the first rOOti but this relation does not persist as the root

number increases, In fact X approaches b more rapidly than a + tt

The fact that the sequence x. does not converge to b implies that

some change to the recursion formulae must be made. The most direct

method of changing the formulae consists of a modification to P(x),

16



4. 1. Linear Average.

Suppose a sequence /x I were to converge such that (4. 1. 1) holds,

TT /\fl + —i. e.

b = a + tr / Vl + —^- (4. 1 . 1

)

4%

where % is the limit point of a sequence / x. I

(4%
2
+ l)(b-a)

2
= 4%.

2
tr
2

4% 2
[(b-a)

2
- u

2
] = - (b-a) 4

T
% =

b-a

' (b-a)
2

- it
2

b-a

2 2
2 Vir -(b-a)

We have shown that (b-a) < tt , therefore, we know that % is real.

Computed vaJues of % are displayed in table II, along with the tabulated

values of b. The error column is the difference between x and X ,

and indicates the amount x must be decreased if the sequence \X-\ is to

converge to b. Noting that % is almost midway between a and x the

following modification to the recursion formulae is suggested:

1

P(x.) = 1 +
2

(4.1.2)
4 (a + x.)

u. + P(x.) u. a (4. 1.3)

u.(x) = k. sinYP(x.) (x-a) (4.1.4)

x = a+ir/YP(x
i
) (4.1.5)

In essence, the modification consists of merely substituting

(a + x l

i in place of x. in (4.4). Clearly the conclusions reached

regarding convergence of the sequence |x. > are also valid for the

17



sequence j x. ( . For the sequence i x.\i we are unable to make any con-

clusion relative to b since the x, of Case II is

*/Yl + 4:Xj = a+ , yx , _T
4 x

o

= a +

V
> #a+a+TTv
il

—

t-—

J

rr

= a + /—
i

yl + „ 2 (4. 1.6)
4 (a + J )

and lies in the interval (a,b). Moreover, we can see that for i ^> 1

each element of the sequence
f
x. | is smaller than the corresponding

element of the sequence | x. | and we conclude that the limit of the se-

quence ]fx.| = x is smaller than x . We have that

ir tt

x = a + i "
"-—-:- = a +

1 «• / 1

1 + ~p~T VI + 2

4(2p) (a + x)

(x - a)
2
[(a + x)

2
+ 1] - (a + x)

2
tt

2
= (4. 1. 7)

x + (1 - 2a
2

- it

2
) x

2
- [2a(l + tt

2
)] I + a

4
+ a

2
(l-iT

2
) = (4. 1. 8)

For the larger roots of (4. 1 8) we look at (4„ 1„ 7) and see that

— 2
(a + x) > > 1 so that an approximation yields

2 .7 2 2
(x - a)' (a + x) - (a + x) ir =0

x = a + it „

We conclude that (4„ 1„ 8) has a solution near a + ix i and that this

solution is the x we desire„

Table III lists the desired roots of (4.1 8) for the same 20 roots

as in section 4„ A comparison of the error column of table III against

18



table I shows that the difference between x and the tabulated root b is

about one-tenth as large as the difference between x and b at the first

root. Moreover, we see that x approaches b more rapidly than x,

that x - b is only . 01 times x - b for the tenth root.

Based upon the results of these computations, we conclude that

<^
although x is nearer b than x , x is still not the value of x whose

existence is guaranteed by theorem 2. 2.

4.2. Mean Value.

Consider the integrated mean value of P(x) over the interval (a,x)

and denote this integrated mean value by F(x)» then

P(x ) = -
x-a f (1+ -4-

Ja 4t^

-) dt

1

x-a
[t

1
1

X
L 4t J a

1

x-a
r 1,1

- 1 x- a + -r (
—

L 4 x x -k»
= 1 +

1 - a-x
4(x-a) ax

)

= 1 +
1

4ax

We see that

*W = l + 4^ > P <*> = 1 * ' ,

(a+x)

1 1

4ax /'
. , .2
(a+x)

(4.2.1)

2 2
a + 2ax + x > 4ax

a - 2ax + x }

(a-x) y for all x 4 a .

Suppose we generate a sequence /x.| by means of the following

recursion formulae:

19



lP(x.) = 1 +
i

1 4ax. (4. 2.2)
i

v *

u." + IP(x.) u. = (4. 2.3)
i i' i \ • /

u.(x) = k. sin VlP(x7)(x-a) (4. 2.4)

x
i+l

= a + ^^(x.) (4.2.5)

But equations (4. 2. 2) through (4. 2. 5) are the same as the set of

equations (4.4) through (4.7) except ax. is substituted for x. in

(4.4). If we make this substitution throughout our preceeding considera-

tion we see that the sequence |x.( also converges to some x = x such

that

x = a +

i* >

4ax

M a
, 1UA .2 *\ 2 A(4ax + l)(x-a) - 4ax it =

4ax 3
+ (l-8a

Z
) x

Z
+ (4a

3
- 2a - 4a ir

Z
) x + a

2
= (4. 2.9)

Inequality (4 C 2. 1) shows us that x must indeed be less than x

but once more we are unable to state any analytical conclusions regard-

ing x and b .

Table IV contains the roots of (4. 2. 9) for the same zeros of

'A

J (x) as previously computed. We see that x is smaller than b. We

note also that |x-b| is greater than jx-bj .

Since b has been bracketed by x and x , a linear average of the

two is suggested. Accordingly we define

P(xl.) « (P(x.) + P(x.))/2 (4.2.10)

(4.2.11)

Then equation (4. 2, 10) and (4 U 2. 11) together with equations (4. 5) and

(4. 6) constitute a set of recursion formulae which will generate a

20



sequence fxl. . We know the sequence xl will converge to some
..' s - f

xl since it is the sum of two convergent sequences x.f and, x. . The
<= t-

{ x) '1

values of xl are displayed in Table V. We see that although the values

of xl are nearer to b than x, they are not as near as x .

— A
Suppose we consider the average of x and x . Let us define:

P(x2,) = (P(x.) + P(x.))/2 (4.2.12)

x2.
+ 1

= a + W VP(x2.) (4.2.13)

Again equations (4.2.12) and (4.2.13) together with (4.5) and (4.6)

will generate the convergent sequence rx2.l . We see from Table VI

that x2 is nearer to b than any of the previous values generated. The
— -3maximum difference between x2 and b is less than 10 for the first

- 7
root and decreases to less than 10 for the 20th root. The difference

decreases quite rapidly as is evidenced by a value less than 10 beyond

the fifth root.

4. 3 Cumulative Effect.

Let us now investigate the cumulative error for each of the sequen-

ces previously discussed. The errors in this case are cumulative in

the following sense;

Assume that a = r. , the first root of J (x) is known, we will

compute an x from a sequence. Then each sticcessive root is generated

using the root lsst computed as the value of the known root.

The cumulative errors for x, x , x, xT and x2 are shown in

Tables VII through XI respectively. As well expected, the cumulative

error is due mostly to the error in computing the first root. We see from

Table XI tha,t the cumulative error for the 20th root is only 10%
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greater than the error for the first root. Tar-, worst case is shown in

Table X where the cummulative error tor th»= 20th root is 40% greater

than the error for the first root.



5. Application to Bessel's Equation of Order n > 1 .

When n j> 1, the normal form of Bessel's equation is

y" + (i + ^S- ) y= o (5.1)
4x^

Let us impose the condition

y(a) = y(b) - .

Again let P(x) denote the coefficient of y in (5. 1), i.e.

P(x) = 1 + ±-Z£
( 5 - 2

)

4x^ _

We see that P(x) > for all x j> j V4n -1, moreover, P(x) is

monotone increasing, lim P(x) = 1. i.e. < P(x) < 1 for all x

such that x is in the interval -j y4n -1, ©*» ) . We shall limit our dis-

cussion to the case P(x) > in order that the conditions of the theorems

of section 2 may be satisfied,,

Except for P(x.), the recursion formulae defining the sequence will

be the same as in section 4, i.e.

2

P(x.) = 1 +
X-4^ (5.3)

1
4x^

o

u M + P(x.) u. = (5.4)
i 11

u.(x) = k. sinVP(x.y (x-a) (5.5)11 1

x
i+i

= a+ T,Yp(*i)
( 5 - 6 >

As before we consider the t\x o c^.ses x = a and x = a + ir .

o o

Case J:

Choose
.
x = a ,

giving

P( X ) = 1 + \z*£ = l + hi* (5. 7)
° 4x 4a

o

u" + P(x ) u = (5. 8)
o v o' o

u (x) = k sinVp(x ) (x-a) (5.9)

(5.10)
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Since P(x) is increasing, we see that P(x ) < P(x) for all x in

(a,b)„ Then theorem 2. 1 tells us that, x, > b . Moreover, P(x ) < 1 ,
I ^ o

therefore, from (5. 10) we see that x. > a + tr .

When x. is substituted in the recursion equation we have
2

P(x
L

) = 1 +
1-^n- (5. 11)
4x,

M** + P(x
1

) u
l

=

u.(x) = k, sin VP(x.) (x-a)

(5.12)

We know from the inequality x, ^b that x
?

is in the interval (a,b).

Trivially then x
2

< x, , moreover, P(x,) < 1 tells us that x
? y a + it .

Then we have

x = a < a + it < x, < b < x. (5. 13) .o 2 1

Let us now consider the next element of the sequence. If x
?

is

substituted in equations (5„ 2) through (5. 6) ,we have

i A 2

P(x
2

) = 1 + il|£- (5.13)
4xp

U
2

+ P < x 2> u
2 = °

u
?
(x) - k^ sin VP(x

2 ) (x-a)

x
3

= a + Tr/VP(*
2f ( 5 « 14)

Since x
?

is in the interval (a,b) we do not have the necessary

inequality for theorem 2. 1 and consequently we can no longer determine

the relation of x. to b for i J> 3 . We see, however, that P(x
?
)>P(x.)

since P(x) is increasing and x
?

< x, . This implies that x- ^ x
? .

Clearly P(x~) < P(x ) and x- < x, „ Then we have

x = a<a+Tr<x-,<x <x, (5 15)
o 2 3 1



p
<*k. 2>

S L + i^L
4
*k-2

P(*
k )

S I
U4n2

4x,
k

Suppose, for seme k^3 that the following inequalities hold:

a < a fir<x- <:
- ° - ^ x

k 2
'^

*k * *
'

<-
° " '

"^ x
l ^° *^

The recursion formula gives

(5 17)

(5, 18)

P(*k_ x
)= 1 + -^ (5.19)

4:*C i

uJJ. 2
r P(xk_ 2

)uk2 - (5.20)

u
k

+ P<x
k ) uk

= ° (5.21)

«tl + P
<*k-l>

u
k-l

s ° < 5 < 22 >

x
k- 1 = a + w / YP(x.

k __ ?j
) (x-a) (5 23)

x
k

= a + it / VP(»^ .

{
) (x-a) (5.24)

x
k+l

=
:
"' + ff ^ ^ p (xk^

(*-^ a ) (5.25)

The assumpnon (b a 16) tells us that P(*
k ?) >P(x, ) )> P(x, .) since

P(x) is increasing. It we apply theorem 2. 1, first with respect to (3„ 21)

and (5,20);, then with respect to (5.21) and (5„22); we have

xo" a<a+ir< x, < . . . < xk2 < ^ < «
k+1

< x^
x
<. .. <X

j
(5 U 26)

We have now shown inductively that x.. . lies in the interval
1+ I

(x. , x
; ,) for all i . Let us now select the sub sequence fz .j of be.

|

such that for each j, z . -• x, . „ Trivially z, = x7 >z = x , Assuming

then z > z for some m % Wf see That z * x-» j,x, , a zm ' m-

1

^ m 2m ^ 2m- 2 m-1

Moreover 3 we know thr- 1 * , „., lies in the interval (x, , x, . ,) ,cm+ ii tm t,m v i

therefore a we conclude z , , > z y and that fz.f is monotone increasing,m+i f m i j>
6
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Clearly, the sequence '..is bounded abo ,;
<: ay a „ Therefore, we

j ; I

conclude thai the sequence z.\ converges to some z „

Similarly, consider the subsequence fv { of |x.} chosen such that7 "1 n> i

for each n, v - x- .„ By an argument similar to the one forfz.fwe
-

can show that the subsequence v is decreasing and bounded below by

a, therefore, it converges to some v . We have now shown that the

sequence >x. (contains two convergent subsequences ;z. and v , and

in order to prove convergence of fx.f we must show that the subsequences

converge to the same point, i. e that z a v We know from (5.25)

tha t

VPR 7^2 (5. 26)

4 /a

+

\
2

I
,/U !

and v - I

i + Id

4/a+ 4-
* \

2
(5.27)

/ U4n2
*

\ 4v - '

Equation (5. 26), after considerable algebraic manipulation, can be

reduced to the e< on

[z-a) "(4 } a{4z"" 4' L-4n ) f 4z ir
f
+ (I -4n )(4z ""+ .U4n*>4ir*"

[a(4l + I~4n') - 4z '

ir j . 16a £ (4z f U4« ) j

(i" a) - 4ir "

o (5 8 2

which is clearly a polynom:.-->5 of degree 8 , Similarly, Equation (5»27)

will reduce to the same polynomials Then we can conclude that z -- v

and the sequent- converges to som< k such that

lb



x = a + —

which reduces to

4x -8ax + (4a + l-4n"-4ir )x -2a(l-4n ) x

+ (l-4n
2

) a
2

= (5.29) .

Moreover, x is the root of equation (5 C 29) nearest a + it .

Case II:

Suppose we choose x = a + ir then (5„ 3) through (5„ 6) becomes
2° 2

l-4n l-4n
P(x ) = 1 + ±-^2 = 1 + —-^- 2 (5.28)

4x 4(a+ir)
o x

u" + P(x ) u =
o * o' o

u (x) = k sinYPfx ) (x-a)

Xj = a + it /VP(x ) (5. 29) .

We have chosen an x with interval (a y b) , therefore, we cannot
o

make any comparisons between x, and b Since

P(x ) < 1 we know x, > a + ir = x
* o 1

' o

Let us now find the next element x
?

of the sequence /x. | . We

have the equations
2

1 - 4nP(x , = i + L*£
4xj

u» + p(v
3

) uj = o

u
x
(x) = kj sinYPtxj) (x-a)

X -^ — ct "If*

The inequality x, \x implies that P(x.. } < P(x ) since P(x) is
1 - o i o

decreasing c Theorem 2 1 , therefore, tells us that x
?

< x, ,

moreover, from P(>.-,) < 1 we see that x,) a. + tr giving

x = a + it < k-, < x, (5„ 30) .

o 2 1
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Clearly, tor all i£ 2 this sequence behaves exactly as the sequence

of Case I f therefore* converges to sorev- x such that

(5.31)

But equation (5 3 1) after simplification reduces to the same quartic as

(5 2 7), and we conclude that x. = x „

In either case for n \ 1 we have been unable to relate x to b,

therefore, we must consider computations for the first 20 roots.

The results of the computation displayed in table XII are com-

parable to those shown ix\ table T for the cas- n = 0, as should well be

expected. We see that for the 20th root, the error in rable XII is

-4 r -6
10 while for J , it is about 5 x 10

o

Suppose, however s the sequence
5
1>x w< re to converge to b„ The

final result would have, for some %, the following

b = a +

it

= a + -

l-4n
l + -V

(4i
2

t ] 4n
2

) (b- - 4& 2
ir
2
S

which when solved foi I saows that

(5.32)

Trivially % determined in this manner is r lued> since

(b-a)^>Tr and 4n > 1 „ The values of % computed from equation (5.32)

are shown in table XIII. These values suggest that the following modifi-

cation be made to the recursion formulae.,
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P(x ) ~ i +

4

i

U." + P(x.)u. a
5 ]

u.(x) = k. s n yP(x.)(x-a)

—
. IT

x. . , = a H

YP(x.)

We have already shown that the sequence fx.. I defined by equations

(5.3), (5.4)» (5„5) and (5.6) converges to x„ The sequence f x. ] is

the sum of a constant and a multiple of x., and therefore will converge.

This implies that the sequenc e I x. [converges to some x such that

x = a + - -

(5. 13)

x +(l-4n -2a -ir )x -[2a(l-4n +ir ) ]x + a + a (l-4n -ir ) = (5.14)

The roots of the quarter (5 14) ne.ircs. a t r r*; displayed in

table XIV for th< rst 20 roots of J,(x). Comparing the errors of

table XIV agair.s; tab! XI) we see that |x-b j is one order of magni-

tude smaller than jx-b
j „

We shall ne id amine the sequence?

>

i„e, the mean value of

P(x) over the int< I (a s
y n The mean value o' P(x) is defined in the

f <^ i

same manner as n section 4„ ?,. We know th i sequence
f x. r will

1
'

converge since it consists of elements which ar« multiples of the elements

of a convergent sequence, Then we have

x«a + W V P{>)

a 4
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a3 2 ~\ ? 2 *<

4ax +(l-4n -8a )x +(4a -2a-8a n -4air)x a Ha n (5. 15)

We see that for n >, 1, the limit of the sequence results in a cubic

similar to the one for x when n = 0. Again we know that x is the root

of the cubic nearest a + it.

Table XV displays the roots of equation (5. 15) for the first 20

roots of J, (x)„ As expected from the results for J (x), we see that

again x is past b and that x and x have straddled b. We note,

as for J (x), }*>bj >
|

x~t>| .

We shall now examine xl and x.2, as defined in section 4. 2. The

values of xl are displayed in table XVI . Again, as for J (x), we see

that xT is further from b than x.

x2~ is again nearest b for J,(x), with a maximum error for the

first root. In general, we see that the various sequences generated for

J,(x) tend to converge to points farther from b than the same sequence

for J (x).

As expected, the cumulative errors shown in tables XVIII through

XXII exhibit the same characteristics as the cumulative errors for

J (x).
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6. Conclusions.

We have proposed a technique of computing the consecutive zeros

of a solution to a Sturm- Ldouville System.

[r(x)y'(x)] { + P(x)y(x) = (6.1)

y(a) = y(b) =

The technique requires the determination of an x such that the equation

[r(x)u'(x)]« + P(x)y(x) = (6.2)

will have a solution u(x) which maybe forced to vanish at x = a and

at x = b .

The existence of such an x has been shovn by theorem 2.2. More-

over, in theorem 2„ 2„ 1 we have established upper and lower bounds on

the range of this x .

In the specific case of the Bessel functions, we note that each of the

sequences generated by the proposed technique converges to a particular

x, no matter whether the first element was chosen equal to the known

root a, or chosen equal to a + it . We see that x turns out to be the

root of a quartjc nearest a + tt. Similarly, we see that x is also a root

of a quartic polynomial while x resolves into a cubic equation.

The solution for % for the case n s and for n = 1 both indicate

that the value of the desired x as defined by theorem 2„ 2 is almost

midway between a and b. The difference between x and % approaches

tt/2 as x incr :-ases„

We have also shovn that the desired x for the Bessel functions lies

between the x determined by a linear averaging technique and the x

determined by the mean value of P(x) over the interval (a,x).

Unfortunately, all of the above generating techniques failed to result

in a sequence converging to the desired x.
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TABLE I

VALUES OF X* »•« Jq(X)

ZEROS OF THE BESSEL FUNCTION OF ORDER ZERO FOR ROOTS

ONE THROUGH TWENTY, BASED ON THE RECURSION FORMULAE

P(X(I)} « HIAIXdir X(H-I) * A+TT/VPUU))

ERROR IS THE DIFFERENCE BETWEEN TABULATED AND COMPUTED ROOTS

ROOT
NO.

TABULATED
ROOT

COMPUTED
ROOT

ERROR

1 5.5200781103 5.5336719233 .0135938131

2 8.6537279126 8.6564432415 .0027153292

3 11.791534M390 11.7925004759 .0009660370

4 14.9309177082 14.9313671612 .0004494532

5 18.0710639674 18.0713085639 .0002445965

6 21.2116366294 21.2117842031 .0001475737

7 24.3524715304 24.3525673207 .0000957905

8 27.4934791317 27.4935447974 •0000656658

9 30.63460614676 30.6346534281 .0000469606

10 33.7758202134 33.7758549489 .0000347356

11 36.9170983527 36.9171247659 .0000264135

12 40.0584257636 40.0584463133 .0000205500

13 43.1997917127 43. 1998080136 .0000163012

14 46.3411883712 46.3412015187 .0000131483

15 49.4826098960 49.4826206546 .0000107595

16 52.6240518400 52.6240607537 .0000089143

17 55.7655107528 55.7655182229 .0000074702

18 58.9069839241 58.9069902431 .0000063197

19 62.0484691886 62.0484745828 •0000053946

20 65.1899647992 65. 1899694391 .0000046415
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TABLE II

VALUES OF * ••« J (X)

ZEROS OF THE 8ESSEL FUNCTION OF OROER ZERO FOR ROOTS

ONE THROUGH TWENTY, BASED ON THE RECURSION FORMULAE

CHI IS THE VALUE X MUST ASSUME TO CONVERGE TO B

%,= UB-A)/2)( Vl/((B-A)2 -7r2
) )

ERROR IS THE DIFFERENCE BETWEEN X AND CHI

ROOT
NO.

TABULATED
ROOT

1 5.5200781103

2 8.6537279126

3 11.7915344390

It 14. 9309177082

5 18.0710639674

6 21.2116366294

7 24.3524715304

8 27.4934791317

9 30.6346064676

TO 33.7758202134

11 36.9170983527

12 40.0584257636

13 43.1997917127

14 46.3411833712

15 49.4826098960

16 52.6240518400

17 55.7655107528

18 58.9069839241

19 62.0484691886

20 65.1899647992

COMPUTED
ROOT

3.8368678503

7.0180586502

10.1751194785

13.3249362609

16.4716300704

19.6166964089

22.7608070695

25.9043037482

29.0473744823

32. 1902150838

35.3327245601

38.4751889762

41.6175294435

44.7596824104

47.9016739726

51.0439078268

54.1856175233

57.3278564233

60.4698329102

63.6115127150

ERROR

1.6968040731

1.6383845913

1.6173809974

1.6064309003

1.5996784936

1.5950877941

1.5917602512

1.5892410493

1.5872789458

1.5856398651

1.5844002059

1.5832573371

1.5822785702

1.5815191083

1.5809466820

1.5801529270

1.5799006997

1.5791338198

1.5786416726

1.5784567241
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TABLE III

VALUES OF X* •»• JMX)

ZEROS OF THE BESSEL FUNCTION OF ORDER ZERO FOR ROOTS

ONE THROUGH TWENTY, BASER ON THE RECURSION FORMULAE

PU(I)) = 1+1/Mt (A+x"(I ))/2)? X(H-l) * A*7t/ \/p{X(I) J

ERROR IS THE DIFFERENCE BETWEEN TABULATED AND COMPUTED ROOTS

ROOT
NO.

TABULATED
ROCT

COMPUTED
ROOT

ERROR

1 5.5200781103 5.5217120022 .0016338920

2 8.6537279126 8.6538810786 .0001531661

3 1 1.7915344390 11.7915695005 .0000350617

4 14.9309177082 14.9309296827 ,0000119747

5 18.0710639674 18.0710691069 .0000051396

6 21.211636629U 21.2116391868 .0000025579

7 24.3524715304 24. 3524729425 .0000014123

8 27.4934791317 27.4934799736 •0000008423

9 30.6346064676 30.6346070007 .0000005335

10 33.7758202134 33.7758205654 . .0000003527

11 36.9170983527 36.9170985967 .0000002443

12 40. 0584257636 40.0584259368 .0000001732

13 43.1997917127 43. 1997918384 .0000001260

1U 46.3411883712 46.3411884652 .0000000946

15 49.4826098960 49.4826099686 .0000000730

16 52.6240516400 52.6240518950 .0000000556

17 55.7655107528 55.7655107975 .0000000452

18 58.9069839241 58.9069839586 .0000000349

19 62.0484691886 62.0484692166 .0000000280

20 65.1899647992 , 65.1899648216 •0000000226
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TABLE IV

VALUES OF X ••• Jq(X)

ZEROS OF THE BESSEL FUNCTION OF ORDER ZERO FOR ROOTS

ONE THROUGH TWENTY, BASED ON THE RECURSION FORMULAE

P($(I)) - W1/4A$(I) $(1+1) * A+T/ l/plXII))

ERROR IS THE DIFFERENCE BETWEEN TABULATED AND COMPUTED ROOTS

ROOT
NO,

TABULATED
ROOT

COMPUTED
ROOT

ERROR

1 5.5200781103 5.5172325156 -. 0028455946

2 8.6537279126 8.6534819095 -.0002460030

3 11.7915344390 11.7914791510 -.0000552879

4 14.9309177082 14.9308989581 -.0000187501

5 18.0710639674 18.0710559469 -.0000080201

6 21.2116366294 21.2116326443 -.0000039842

7 24.3524715304 24.3524693325 -.0000021976

8 27.4934791317 27.4934778223 -.0000013094

9 30.6346064676 30.6346056401 -.0000008275

10 33.7758202134 33.7758196630 -.0000005496

11 36.9170983527 36.9170979746 -.0000003774

12 40.0584257636 40.0584254945 -.0000002689

13 43.1997917127 43.1997915152 -.0000001969

14 46,3411883712 46.3411882240 -.0000001468

15 49.4326098960 49.4826097842 -.0000001110

16 52.6240518400 52.6240517525 -.0000000871

17 55.7655107528 55.7655106848 -.0000000672

18 58.9069839241 58.9069838692 -.0000000548

19 62.0484691886 62.0484691439 -•0000000444

20 65.1899647992 65.1899647620 -.0000000366
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TABLE V

VALUES OF 7T #• J m
ZEROS OF THE BESSEL FUNCTION OF ORDER ZERO FOR ROOTS

ONE THROUGH TWENTY, BASED ON THE RECURSION FORMULAE

P<xT(I>) * (P(X(I))+P($U)))/2 xT(H-l)* n + 70 *Vp(xkd)
ERROR IS THE DIFFERENCE BETWEEN TABULATED AND COMPUTED ROOTS

ROOT
NO.

TABULATED
ROOT

COMPUTED
ROOT

ERROR

1 5.5200781103 5.5254224626 .0053443524

2 8.6537279126 8.6549613329 .0012334206

3 11.79153UU390 11.7919896499 .0004552110

4 14. 9309177082 14.9311330232 .0002153153

5 18.0710639674 18.0711822445 .0001182773

6 21.2116366294 21.2117084200 .0000717907

7 24.352U715304 24.3525183247 .0000467948

8 27.4934791317 27.4935113089 .0000321774

9 30.6346064676 30.6346295336 .0000230662

10 33.7758202134 33.7758373059 .0000170928

11 36.9170983527 36.9171113698 .0000130179

12 40.0584257636 40.0584359039 .0000101405

13 43.1997917127 43. 1997997640 .0000080521

1U 46.3411883712 46.3411948718 .0000065007

15 49.4826098960 ^9,4826152194 .0000053242

16 52.6240518400 52.6240562536 .0000044135

17 55.7651.107528 55.7655144539 .0000037015

.18 58.9069839241 58.9069870561 .0000031325

19 62.0484691886 62.04847186 34 .0000026751

20 65.1899647992 65. 1899671014 •0000023024
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TABLE VI

VALUES OF X2 • •• JqU)

ZEROS OF THE BESSEL FUNCTION OF ORDER ZERO FOR ROOTS

ONE THROUGH TWENTY, BASED ON THE RECURSION FORMULAE

A+^/V P(X2(I) JP(X2(I>) =(P(X( I) )+P(X(I) ))/2 X2CI*1)

ERROR IS THE DIFFERENCE BETWEEN TABULATEO AND COMPUTEO ROOTS

ROOT
NO.

TABULATED
ROCT

COMPUTEO
ROOT

ERROR

1 5.5200781103 5.5194687883 -. 0006093219

2 8.6537279126 8.6536814596 -.0000464527

3 11.7915344390 11.7915243239 -.0000101150

4 14. 9309177082 14.9309143201 -.0000033879

5 18.0710639674 18.0710625267 -.0000014403

6 21.2116366294 21.2116359160 -.0000007132

7 24.3524715304 24.3524711374 -.0000003927

8 27.4934791317 27.4934788980 -.0000002336

9 30.6346064676 30.6346063204 -.0000001470

10 33.7758202134 33.7758201146 -.0000000984

11 36.9170983527 36.9170982856 -.0000000665

12 40.0584257636 40.0584257152 -.0000000478

13 43.1997917127 43. 1997916764 -.0000000355

14 46.3411883712 46.3411883442 -.0000000261

15 49.4826098960 49.4826098764 -.0000000190

16 52.6240518400 52.6240518242 -.0000000158

17 55.7655107528 55.7655107416 -.0000000110

18 58.9069839241 58.9069839139 -.0000000099

19 62.0484691886 62.04 84691802 -.0000000082

20 65.1899647992 65. 1899647918 -.0000000070
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TABLE VII

CUMULATIVE ERRORS FOR *X »•» Ja(X)

ZEROS OF THE BESSEL FUNCTION OF OROER ZERO FOR ROOTS

ONE THROUGH TWENTY, BASED ON THE RECURSION FORMULAE

AFTER THE FIRST ROOT IS COMPUTED, THE NEXT ROOT IS COMPUTED

FROM THE VALUE OF *? LAST OBTAINED. ERROR IS CUMULATIVE

FROM THE FIRST ROOT.

ROOT
NO*

TABULATED
ROCT

COMPUTED
ROOT

ERROR

1 5.5200781103 5.5336719233 .0135938131

2 8.6537279126 8.6700534131 ^0163255008

3 1 1.7915344390 11.8088337616 .0172993229

if 14.9309177082 14.9486705526 .0177528444

5 18.0710639674 18. 0390637 ',50 .0179997976

6 21.2116366294 21.229785*78? ®0181488496

7 24.3524715304 24.3707171555 .0182456251

8 27.4934791317 27.5117911105 .0183119791

9 30.6346064676 30. 6529659065 .0183594390

10 33.7753202134 33.7942147609 .0183945483

11 36.9170983527 36.9355196003 .0184212479

12 40.0584257636 40.0768677853 •0184420225

13 43. 19979! 7127 43.2182502151 .0184585024

11* 46.341 1883712 46.3596601672 ,0184717962

15 49.4326098960 49.5010925708 .0184826752

16 52.621, 0518400 52.6425435282 .0184916886

17 55,7655107528 55.7840099940 .0184992421

18 58.9069839241 58.9254895560 .0185056320

19 62.0484691886 62.0669802753 .0185110874

20 65.1899647992 65.2084805798 .0185157806
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TABLE VIII

CUMULATIVE ERRORS FOR X • •• J
Q
(X)

ZEROS OF THE BESSEL FUNCTION OF ORDER ZERO FOR ROOTS

ONE THROUGH TWENTY, BASED ON THE RECURSION FORMULAE

AFTER THE FIRST ROOT IS COMPUTED, THE NEXT ROOT IS COMPUTED

FROM THE VALUE OF X LAST OBTAINED. ERROR IS CUMULATIVE

FROM THE FIRST ROOT.

ROOT
NO.

TABULATED
ROOT

1 5.5200781103

2 8.6537279126

3 1 1.79153414390

k 14.9309177082

5 18.0710639674

6 21.2116366294

7 24.3524715304

8 27.4934791317

9 30.634606^4676

10 33.77582021314

11 36.9170983527

12 40.0584257636

13 43.1997917127

14 46.341 1883712

15 49.4826098960

16 52.6240518400

17 55.7655107528

18 58.9069839241

19 62.0484691886

20 65.1899647992

COMPUTED
ROOT

5.5217120022

8.6555185516

11.7933614515

14.9327572957

18.0729090152

21.2134844260

24.3543208619

27.4953293884

30.6364573166

33.7776714582

36.9189498741

40.0602774834

43.2016435778

46.3430403462

49.4844619567

52.6259039668

55.7673629336

58.9088361468

62.0503214458

65. 1918170843

ERROR

.0016338920

.0017906391

.0018270126

.0018395875

.0018450481

.0018477967

.0018493315

.0018502570

.0018508493

.0018512453

.0018515220

.0018517202

.0018518660

.0018519759

.0018520612

.0018521272

.0018521811

.0018522234

.0018522573

.0018522854
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TABLE IX

CUMULATIVE ERRORS FOR X • •• J (X>

ZEROS OF THE BESSEL FUNCTION OF ORDER ZERO FOR ROOTS

ONE THROUGH TWENTY, BASED ON THE RECURSION FORMULAE

AFTER THE FIRST ROOT IS COMPUTED, THE NEXT ROOT IS COMPUTED

FROM THE VALUE CF X LAST OBTAINED. ERROR IS CUMULATIVE

FROM THE FIRST ROOT.

ROOT
NO.

TABULATED
ROCT

COMPUTED
ROOT

ERROR

1 5.5200781103 5.5172325156 -.0028455946

2 8.6537279126 8.6506294168 -.0030984957

3 11.7915344390 11.7883782729 -.0031561660

U 14.9309177082 14.9277417252 -.0031759829

5 18.0710639674 18.0678793995 -.0031845679

6 21.211636629U 21.208447V427 -*003188886$

7 24.3524715304 24.3492802321 -.0031912980

8 27.49347913l'7 27.4902863791 -.0031927526

9 30.6346064676 30.6314127846 -.0031936828

10 33.7758202134 33.7726259045 -.0031943080

11 36.9170983527 36.9139036089 -.0031947432

12 40.0584257636 40.0552307060 -.0031950568

13 43. 1997917127 43. 1965964232 -.0031952894

14 46.3411883712 46.3379929066 -.0031954644

15 49.4826098960 49.4794142973 -.0031955985

16. 52.6240516400 52.6208561352 -.0031957048

17 55.7655107528 55.7623149641 -.0031957879

18 58.9069839241 58.9037880665 -.0031958568

19 62.0484691886 62.0452732751 -.0031959134

20 65.1899647992 65. 1867688391 -•0031959599
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TABLE X

CUMULATIVE ERRORS FOR X~T • «• Jq(X)

ZEROS OF THE BESSEL FUNCTION OF OROER ZERO FOR ROOTS

ONE THROUGH TWENTY, BASEO ON THE RECURSION FORMULAE

AFTER THE FIRST ROOT IS COMPUTED, THE NEXT ROOT IS COMPUTEO

FROM THE VALUE OF XI LAST OBTAINED. ERROR IS CUMULATIVE

FROM THE FIRST ROOT.

ROOT
NO.

TABULATEO
ROOT

COMPUTED
ROOT

ERROR

1 5.5200781103 5.5254224626 •0053443524

2 8.6537279126 8.6603153765 .0065874640

3 11.7915344390 11.7985812158 .0070467769

4 1U. 9309177082 14.9381818194 .0072641112

5 18.0710639674 18.0784474835 .0073835164

6 ' 21.2116366294 21.2190926266 .0074559972

7 24.3524715304 24.3599747745 .0075032441

8 27.4934791317 27.5010148650 .0075357334

9 30.6346064676 30.6421654909 .0075590234

10 33.7758202134 33.7833964955 .0075762823

11 36.9170983527 36.9246877786 •0075894268

12 40.0584257636 40.0660254285 .0075996651

13 43.1997917127 43.2073995080 .0076077954

14 46.341 1882712 46.3488027304 .0076143594

15 49.4826098960 49.4902296308 .0076197354

16 52.6240518400 52.6316760313 .0076241914

17 55.7655107528 55.7731386814 .0076279288

18 58.9069839241 58.9146150155 .0076310916

19 62.0484691886 62.0561029809 .0076337926

20 65.1899647992 65. 1976009160 .0076361171
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TABLE XI

CUMULATIVE ERRORS FOR "x2 • •• JMX)

ZEROS OF THE BESSEL FUNCTION OF OROER ZERO FpR ROOTS

ONE THROUGH TWENTY, BASED ON THE RECURSION FORMULAE

AFTER THE FIRST ROOT IS COMPUTED, THE NEXT ROOT IS COMPUTED

FROM THE VALUE OF X2 LAST OBTAINEO. ERROR IS CUMULATIVE

FROM THE FIRST ROOT.

ROOT
NO.

TABULATED
ROOT

COMPUTED
ROOT

ERROR

1 5.5200781103 5.5194687883 -.0006093219

2 8.6537279126 8.6530707316 «.0006571810

3 11.7915344390 11.7908666495 -.0006677894

4 14.9309177082 14.9302463082 -.0006714000

5 18.0710635674 18.0703910086 -.0006729586

6 21.2116366294 21.2109628869 -.0006737421

7 24.3524715304 24.3517973502 -.0006741801

8 27.4934791317 27.4928046870 -.0006744443

9 30.63U6064676 30.6339318538 -.0006746134

10 33.7758202134 33.7751454851 -.0006747281

n 36.9170983527 36.9164235452 -.0006748069

12 40.0584257636 40.0577508984 -.0006748646

13 43.1997917127 43. 1991168046 -.0006749080

14 46.3411883712 46.3405134305 -.0006749401

15 49.4826098960 49.4819349311 -.0006749644

16 52.6240518400 52.6233768547 -.0006749846

17 55.7655107528 55.7648357525 -.0006749997

18 58.9069839241 58.9063089108 -.0006750130

19 62.0484691886 62.0477941642 -.0006750239

20 65.1899647992 65. 1892897654 -.0006750335
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TABLE XII

VALUES OF *X »*• Jj (X)

ZEROS OF THE BESSEL FUNCTION OF ORDER ONE FOR ROOTS NUMBER

ONE THROUGH TWENTY, BASED ON THE RECURSION FORMULAE

P(X(I)) - 1 + (1-4N2 )/4(X(I >)
2 XU + 1) * A+K/ /p(X( I))

ERROR IS THE DIFFERENCE BETWEEN TABULATED AND COMPUTED ROOTS

ROOT
NO.

TABULATED
ROOT

COMPUTED
ROOT

ERROR

1 7.0155866698 6.9976376109 -.0179490588

2 10.1734681348 10. 1686351451 -.0048329895

3 13.3236919360 13.3217202593 -.0019716767

4 16.4706300506 16.4696368496 -.0009932009

5 19.6158585101 19.6152890925 -. 0005694173

6 22.7600853802 22.7597279320 -.000357447?

7 25.9036720875 25.9034 342724 -.0002378150

8 29.0468285335 29.0466620042 -.0001665289

9 32.1896799095 32. 1895587798 -.0001211293

10 35.3323075492 35.3322166996 -.0000908489

11 38.4747662339 38.4746963540 -.0000698795

12 41.6170942122 41.6170393117 -.0000549003

13 44.7593189972 44.7592750816 -.0000439151

14 47.9014608869 47.9014252098 -.0000356767

15 51.0435351832 51.0435058065 -.0000293767

16 54.1855536401 54. 1855291631 -.0000244770

17 57.3275254359 57.3275048267 -.0000206090

18 60.4694578443 60.4694403261 -.0000175173

19 63.6113566970 63.6113416851 -.0000150119

20 66.7532267310 66.7532137688 -.0000129620
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TABLE XIII

VALUES OF tf* «•• J (X)

ZEROS OF THE BESSEL FUNCTION OF ORDER ONE FOR ROOTS NUMBER

ONE THROUGH TWENTY, BASED ON THE RECURSION FORMULAE

CHI IS THE VALUE X MUST ASSUME TO CONVERGE TO B

96= ( { B-A ) /2 )(>/(! -UN 2 ) /( (B-A)2 -7i
2
))

ERROR IS THE DIFFERENCE BETWEEN X AND CHI

COMPUTED
ROOT

5,3312873839

8. 5374782400

1 1.7071112888

14.8645464401

18.0163550223

21. 1610798943

2U. 3119656080

27. U576333771

30.6024408266

33. 7466444736

36.8904200587

40.0338375270

43. 1769980257

46. 3199358247

49.4627229534

52.6053818800

55.7479370888

58.8902029432

62.0326487795

65. 1751772780

ROOT
NO.

TABULATED
ROCT

1 7.0155866698

2 10.1734681348

3 13.3236919360

4 16.4706300506

5 19.6158585101

6 22.7600853802

7 25.9036720875

8 29.0468285335

9 32.1896799095

10 35.3323075492

11 38.4747662339

12 41.6170942122

13 44.7593189972

14 47.9014608869

15 51.0435351832

16 54.1855536401

17 57.327525U359

18 60.4694578443

19 63.6113566970

20 66.7532267310

ERROR

1.6663502270

1.6311569051

1.6146089705

1.6050904095

1.5989340702

1.5986480378

1.5914686644

1.5890286271

1.5871179532

1.5855722260

1.5842762953

1.5832017846

1.5822770558

1.5814893851

1.5807828531

1.5801472832

1.5795677379

1.5792373829

1.5786929056

1.5780364908
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TABLE XIV

VALUES OF X* #*» J^(X)

ZEROS OF THE BESSEL FUNCTION OF OROER ONE FOR ROOTS NUMBER

ONE THROUGH TWENTY, BASED ON THE RECURSION FORMULAE

P(X(IJ) = 1 + (1-4N
2 )/4UA*X(I) )/2F 7(1*1) = A+77/ /ptXt I))

ERROR IS THE DIFFERENCE BETWEEN TABULATED AND COMPUTED ROOTS

ROOT
NO.

TABULATED
ROOT

COMPUTED
ROOT

ERROR

1 7.0155866698 7.0141418219 -.0014448478

2 10.1734681348 10. 1732513588 -.0002167758

3 13.3236919360 13.3236309085 -.0000610273

U 16.4706300506 16.4706066190 -.0000234314

5 19.6158585101 19.6158476649 -.0000108451

6 22.7600853802 22.7600786900 -.0000066901

7 25.903672C875 25.9036688204 -.0000032669

8 29.0468285335 29.0468265270 -.0000020061

9 32.1896799095 32. 1896786084 -.0000013006

10 35.3323075492 35.3323066691 -.0000008800

11 38.4747662339 38.4747656174 -.0000006158

12 41.6170942122 41.6170937680 -.0000004442

13 44.7593189972 44.7593186684 -.0000003282

14 47.9014608869 47.9014606383 -.0000002479

15 51.0435351832 51.0435349923 -.0000001903

16 54.1855536401 54. 1855534911 -.0000001483

17 57.3275254359 57.3275253186 -.0000001170

18 60.4694578443 60.4694577483 -.0000000957

19 63.6113566970 63.6113566197 -.0000000766

20 66.7532267310 66.7532266676 -.0000000615

46



TABLE XV

VALUES OF X *# Ji (X)

ZEROS OF THE BESSEL FUNCTION OF ORDER ONE FOR ROOTS NUMBER

ONE THROUGH TWENTY, BASEO ON THE RECURSION FORMULAE

P(xm> * i + (i - un2 )/ uax(i) 5(i+i) » a X/vpmOui))
ERROR IS THE DIFFERENCE BETWEEN TABULATED AND COMPUTED ROOTS

ROOT
NO.

TABULATED
ROOT

COMPUTED
ROOT

ERROR

1 7.0^55866698 7.0180468041 .0024601344

2 10.1734681348 10. 1738162260 •0003480912

3 13.3236919360 13.3237883153 .0000963795

U 16.4706300506 16.4706667955 .0000367450

5 19.615*535101 19.61537545^ .0000169458

6 22.7600853802 22.7600932522 .0000078722

7 25.90i6720875 25.9036771739 .0000050868

8 29.0468285335 29.0468316572 .0000031241

9 32.1896799095 32. 1896819314 .0000020222

10 35.3323075492 35.3323089145 .0000013660

11 38.4747662339 38.4747671895 •0000009564

12 41.6170942122 41.6170949005 .0000006892

13 44.7593189972 44.7593195057 .0000005093

lit 47.90!>->60eS69 47.9014612706 •0000003842

15 51.0435351832 51.0435354784 .0000002958

16 54.1855536401 54.1855538711 •0000002316

17 57,3275254359 57.3275256194 •0000001842

18 60.4694576443 60.4694579896 •0000001462

19 63.6113566970 63.6113568163 •0000001198

20 66.7532267310 66. 7532.268297 •0000000997
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TABLE XVI

VALUES OF xl •»* J^(X)

ZEROS OF THE BESSEL FUNCTION OF OROER ONE FqR ROOTS NUMBER

ONE THROUGH TWENTY, BASED ON THE RECURSION FORMULAE

p(xT(i)) * (iMx(i))+p(x(i)))/? xTm * A+7c/VVm( n j

ERROR IS THE DIFFERENCE BETWEEN TABULATED AND COMPUTFD ROOTS

ROOT
NO.

TABULATED
ROOT

COMPUTED
ROOT

ERROR

1 7.0155866698 7.0077901660 -.0077965038

2 10.173U681348 10. 1712216930 -.0022464M6

3 13.3236919360 13. 322753599U -.0009383365

4 16.4706300506 16.4701516442 -.0004784064

5 19.6158585101 19.6155822147 -.0002762953

,6 22.760085 3802 22.7599105686 -.00017481U

7 25.9036720875 25.9035557127 -.0001163747

8 29.04682853^5 29.0467468258 -.0000817076

9 32.1896799095 32. 1896203524 -.0000595564

10 35.3323075U92 35.3322628057 -.0000447430

n 38.4747662339 38.4747317713 -.0000344625

12 41.6170942122 41.6170671051 -.0000271062

13 44.7593189972 44.7592972936 -.0000217033

11+ 47.9014608869 47.9014432402 -.0000176465

15 51.0435351832 51.0435206424 -.0000145406

16 54.1855536401 54. 1855415171 -.0000121228

1? 57.3275254359 57.3275152231 -.0000102125

18 60.4694578443 60.4694491578 -.0000086856

19 63.6113566970 63.6113492502 -.0000074461

20 66.7532267310 66.7532202993 -.0000064312
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TABLE XVII

VALUES OF X2 «** J^U)

ZEROS OF THE BESSEL FUNCTION OF ORDER ONE FOR ROOTS NUMBER

ONE THROUGH TWENTY, BASED ON THE RECURSION FORMULAE

p(xTm) = (P(xu >> + P($m>>/2 x2m » a+F/n/pcx~2ci) )

ERROR IS THE DIFFERENCE BETWEEN TABULATED AND COMPUTED ROOTS

ROOT
NO.

TABULATED
ROOT

COMPUTED
ROOT

ERROR

1 7.0155866698 7.0160913781 .0005047083

2 10.1734681348 10. 1735337211 .0000655864

3 13.3236919360 13.3237096060 .0000176702

k 16.4706300506 16.4706367063 .0000066559

5 19.6158585101 19.6158615602 .0000030501

6 22.7600853802 22. 76008597 11 .0000005910

7 25.9036720875 25.9036729969 .0000009099

8 29.0468285335 29.0468290923 .0000005590

9 32.1896799095 32. 1896802699 .0000003608

10 35.3323075U92 35.3323077913 .0000002430

11 38.4747662339 38.4747664034 .0000001703

12 41.6170942122 41.6170943342 .0000001225

13 U4. 7593189972 44.7593190875 .0000000905

14 47.9014608869 47.9014609549 .0000000681

15 51.0435351832 51.0435352353 .0000000527

16 54.1855536401 54. 1855536811 .0000000416

17 57.327525^359 57.3275254695 .0000000336

18 60.4694578443 60. 4694578694 .0000000253

19 63.6113566970 63.6113567185 .0000000216

20 66.7532267310 66.7532267496 .0000000191
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TABLE XVIII

CUMULATIVE ERRORS FOR ¥ « •* J^X)

ZEROS OF THE BESSEL FUNCTION OF ORDER ONE FOR ROOTS NUMBER

ONE THROUGH TWENTY, BASED ON THE RECURSION FORMULAE

AFTER THE FIRST ROOT IS COMPUTED, THE NEXT ROOT IS COMPUTED

FROM THE VALUE OF 7 LAST OBTAINED. ERROR IS CUMULATIVE

FROM THE FIRST RCOT.

ROOT
NO.

TABULATED
ROOT

COMPUTED
ROOT

ERROR

1 7.0155866698 6.9976376109 -.0179490588

2 10.1734681348 10. 1507267661 -.0227413687

3 13.3236919360 13.2990017352 -.0246902007

k 16.4706300506 16.4449597476 -.0256703027

5 19.6158585101 19.5896268408 -.0262316693

6 22.7600853802 22.7335015247 -.0265838551

7 25.9036720875 25.8768550311 -.0268170560

8 29.0468285335 29.0198475332 -.0269810002

9 32.1896799095 32. 1625796901 -.0271002193

10 35.3323075492 35.3051179312 -.0271896177

11 38.4747662339 38.4475078629 -.0272583706

12 41.6170942122 41.5897818329 -.0273123789

13 44.7593189972 44.7319634212 -.0273555757

14 47.90)4608869 47.8740702206 -.0273906654

15 51.0435351832 51.0161156254 -.0274195571

16 54.1855536401 54.1581100114 -.0274436282

1? 57.3275254359 57.3000615416 -.0274638942

18 60.4694578443 60.4419767251 -.0274811186

19 63.6113566970 63.5838608174 -.0274958793

20 66.7532267310 66.7257181071 -.0275086237
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TABLE XIX

CUMULATIVE ERRORS FOR X •»• JiU)

ZEROS OF THE BESSEL FUNCTION OF ORDER ONE FOR ROOTS NUMBER

ONE THROUGH TWENTY, BASED ON THE RECURSION FORMULAE

AFTER THE FIRST ROOT IS COMPUTED, THE NEXT ROOT IS COMPUTED

FROM THE VALUE OF X LAST OBTAINED. ERROR IS CUMULATIVE

FROM THE FIRST RCOT.

ROOT
NO.

TABULATED
ROOT

1 7.0155866698

2 10.1734681348

3 13.3236919360

4 16.470630C506

5 19.6158585101

6 22.7600853802

7 25.9036720875

8 29.0468285335

9 32.1896799095

10 35.3323075492

11 38.4747662339

12 41.6170942122

13 44.7593189972

14 47.9014608869

15 51.0435351832

16 54.1855536401

17 57.32/5254359

18 60.4694578443

19 63.6113566970

20 66.7532267310

COMPUTED
ROOT

7.0141418219

10.1718119476

13.3219771462

16.4688930572

19.6141113704

22.7583319838

25.9019167111

29.0450713504

32. 1879215697

35.3305484364

38.4730065875

41.6153341858

44.7575586932

47.8997003762

51.0417745160

54. 1837928528

57.3257645555

60.4676968884

63.6095956815

66.7514656689

ERROR

-.0014448478

-.0016561872

-.0017147896

-.0017369931

-.0017471395

-.0017533960

-.0017553763

-.0017571828

-.0017583393

-.0017591120

-.0017596461

-.0017600260

-.0017603031

-.0017605102

-.0017606668

-.0017607870

-.0017608804

-.0017609558

-.0017610151

-.0017610620



TABLE XX

CUMULATIVE ERRORS FOR # *»» Jn(X)

ZEROS OF THE BESSEL FUNCTION OF ORDER ONE FOR ROOTS NUMBER

ONE THROUGH TWENTY, BASED ON THE RECURSION FORMULAE

AFTER THE FIRST ROOT IS COMPUTED, THE NEXT ROOT IS COMPUTED

FROM THE VALUE OF $ LAST OBTAINED. ERROR IS CUMULATIVE

FROM THE FIRST ROOT.

ROOT
NO.

TABULATED
ROOT

COMPUTED
ROOT

ERROR

1 7.0155866698 7. 0180468041 .0024601344

2 10.1731*681348 10. 1762664455 .0027983109

3 13.3236919360 13. 3265823792 .0028904433

4 16.4706300506 16. 473555122! .0029250719
e 19.6158585101 19. 618799332S .0029408227

6 22.7600853802 22. 763033336! .002947956;

7 25.9036720875 25. 9066256429 .0029535557

8 29.0468285335 29. 0497848745 .0029563413

9 32.1896799095 32. 1926380284 .0029581190

10 35.3323075492 35. 3352668518 .0029593028

1 1 38.4747662339 38. 4777263533 .0029601197

12 41.6170942122 41. 6200549109 .0029606996

13 44.7593189972 44. 7622801177 .0029611211

14 47.9014608869 47. 9044223214 .0029614345

15 51.0435351832 51. 0464968551 .0029616724

16 54.1855536401 54. 1885154955 .0029618555

17 57.3275254359 57. 3304874348 .0029619992

18 60.4694578443 60. 4724199548 .0029621108

19 63.6113566970 63. 6143188979 .0029622011

20 66.7532267310 66. 7561890054 .0029622754
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TA8LE XXI

CUMULATIVE ERRORS FOR XI *•* 'l(X)

ZEROS OF THE BESSEL FUNCTION OF ORDER ONE FQR ROOTS NUMBER

ONE THROUGH TWENTY, BASED ON THE RECURSION FORMULAE

AFTER THE FIRST ROOT IS COMPUTED, THE NEXT ROOT IS COMPUTED

FROM THE VALUE OF X*l LAST OBTAINED. ERROR IS CUMULATIVE

FROM THE FIRST RCOT.

ROOT
NO.

TABULATED
ROOT

COMPUTED
ROOT

ERROR

1 7,0155866698 7.0077901660 -.0077965038

2 10.1734681348 10. 1634497307 -.0100184040

3 13.3236919360 13.3127478317 -.0109441041

4 16.4706300506 16.4592144503 -.01 14155999

5 19.6158585101 19.6041707369 -.0116877730

6 22.7600853802 22.7482254347 -•01 18599452

7 25.9036720875 25.8916985528 -.0119735343

8 29.0468285335 29.0347745535 -.0120539797

9 32.1896799095 32. 1775672976 -.0121126117

10 35.3323075492 35.3201508904 -.0121566580

n 38.4747662339 38.4625756508 -.0121905831

12 41.6170942122 41.6048769467 -.0122172653

13 44.7593189972 44.7470803680 -.0122386289

1U 47.9014608869 47.8892048877 -.0122559989

15 51.0435351832 51.0312648714 -.0122703116

16 54.1855536401 54. 1732713953 -.0122822442

17 57.3275254359 57.3152331384 -.0122922968

18 60.4694578U43 60.4571569972 -.0123008466

19 63.6113566970 63.5990485204 -.0123081761

20 66.7532267310 66.7409122232 -.0123145066
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TABLE XXII

CUMULATIVE ERRORS FOR X2 **« Ji(X)

ZEROS OF THE BESSEL FUNCTION OF ORDER ONE FOR ROOTS NUMBER

ONE THROUGH TWENTY, BASED ON THE RECURSION FORMULAE

AFTER THE FIRST ROOT IS COMPUTEO, THE NEXT ROOT IS COMPUTED

FROM THE VALUE OF X2 LAST OBTAINED. ERROR IS CUMULATIVE

FROM THE FIRST RCOT.

ROOT
NO.

TABULATED
ROOT

COMPUTED
ROOT

ERROR

1 7.0155866698 7.0160913781 .0005047083

2 10.1734681348 10. 1740364628 .0005683281

3 13.3236919360 13.3242770866 .0005851508

4 16.4706300506 16.4712214330 .0005913828

5 19.6158585101 19. 6 164 52 702

L

.0005941927

6 22.7600853802 22. 7606800 15,: .0005946353

7 25.9036720875 25.9042685359 .0005964467

8 29. 046828533*5 29.0474254708 .0005969373

9 32.1896 799095 32. 1902771583 .0005972489

10 35.3323075492 35.3329050038 .0005974551

11 38.4747662339 38.4753638301 .0005975968

12 41.6170942122 41. 6176919080 .0005976967

13 44.7593189972 44.7599167656 .0005977688

14 U7.90U608869 47.9020587085 .0005978224

15 51.0435351832 51.0441330457 .0005978626

16 54.1855536401 54. 1861515343 .0005978945

17 57.3275254359 57.3281253553 .0005979196

18 60.4694578443 60.4700557813 .0005979377

19 63.6113566970 63.6119546490 .0005979527

20 66.7532267310 66.7538246959 .0005979659
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